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a b s t r a c t

We discuss the use of divergences in dissimilarity-based classification. Divergences can be employed

whenever vectorial data consists of non-negative, potentially normalized features. This is, for instance,

the case in spectral data or histograms. In particular, we introduce and study divergence based learning

vector quantization (DLVQ). We derive cost function based DLVQ schemes for the family of

g-divergences which includes the well-known Kullback–Leibler divergence and the so-called

Cauchy–Schwarz divergence as special cases. The corresponding training schemes are applied to two

different real world data sets. The first one, a benchmark data set (Wisconsin Breast Cancer) is available

in the public domain. In the second problem, color histograms of leaf images are used to detect the

presence of cassava mosaic disease in cassava plants. We compare the use of standard Euclidean

distances with DLVQ for different parameter settings. We show that DLVQ can yield superior

classification accuracies and Receiver Operating Characteristics.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Distance-based classification schemes can be implemented
efficiently in the framework of the popular learning vector
quantization (LVQ). LVQ systems are flexible, easy to implement,
and can be applied in multi-class problems in a straightforward
fashion. Because LVQ prototypes are determined in the feature
space of observed data, the resulting classifiers can be interpreted
intuitively. Consequently, LVQ classifiers are widely used in a
variety of areas including image processing tasks, medical appli-
cations, control of technical processes, or bioinformatics. An
extensive bibliography including applications can be found in [1].

A key step in the design of any LVQ system is the choice of an
appropriate distance measure. Most frequently, practical prescrip-
tions make use of Euclidean metrics or more general Minkowski
measures, without further justification. Generalized Euclidean mea-
sures and adaptive versions thereof have been introduced in the
framework of relevance learning, see [2–7] for examples.

Here, we explore an alternative class of distance measures
which relates to approaches based on statistics or information
theory. So-called divergences, for instance the most popular
ll rights reserved.
Kullback–Leibler divergence, quantify the dissimilarity of prob-
ability distributions or positive measures. They can immediately
be employed as distances in supervised or unsupervised vector
quantization, provided the feature vectors and prototypes consist
of non-negative, potentially normalized components. Note that
throughout this article we use the terms distance and distance

measure in their general meaning, which does not imply symme-
try or other metric properties.

Information theoretic distance measures have been discussed
in the context of various machine learning frameworks, pre-
viously. This includes prototype-based clustering, classification,
or dimension reduction, see [8–12] for just a few recent examples.
Frequently, divergences are employed to quantify the similarity of
the prototype density with the observed distribution of data. Note
that, here, we use divergences to quantify directly the distance
between individual data points and prototype vectors. Moreover,
we derive gradient-based update schemes which exploit the
differentiability of the divergences.

After setting up the general framework, we present the family
of so-called g-divergences as a specific example. It is further
specified by choice of a parameter g and includes the well-known
Kullback–Leibler and the so-called Cauchy–Schwarz divergence
as special cases.

We develop the corresponding divergence-based LVQ (DLVQ)
schemes and apply them to two different classification problems.
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First, the Wisconsin Breast Cancer data set from the UCI data
repository [13] is revisited. The second data set relates to the
identification of the cassava mosaic disease based on color
histograms representing leaf images [14]. Performances are eval-
uated in terms of Receiver Operator Characteristics and compared
with the standard LVQ scheme using Euclidean distance. The
influence of the parameter g is studied and we show that data set
dependent optimal values can be identified.

In the next section we outline how divergences can be
incorporated into the general framework of LVQ and we derive
the corresponding gradient-based training. In Section 3 we
introduce the considered classification problems and data sets.
Computer experiments are described and results are presented
in Section 4, before we conclude with a summary and outlook.
2. Divergence-based learning vector quantization

For a particular classification task, we assume that a set of
labeled example data is available:

fxm,ymgPm ¼ 1,

where the xmARN are feature vectors and the labels ymAf1,2, . . . ,Cg
specify their class membership.

In an LVQ system we denote by W ¼ fðwj,cðwjÞg
M
j ¼ 1 a set of M

prototype vectors wjARN which carry labels cðwjÞAf1,2, . . . ,Cg.
Note that one or several prototypes can be assigned to each class.
Prototype vectors are identified in feature space and serve as
typical representatives of their classes.

Together with a given distance measure d(x,w), they para-
meterize the classification scheme. Most frequently, a Winner-

Takes-All scheme is applied: an arbitrary input x is assigned to the
class c(wL) of the closest prototype with dðx,wLÞrdðx,wjÞ for
all j.

The purpose of training is the computation of suitable proto-
type vectors based on the available example data. The ultimate
goal, of course, is generalization: the successful application of
the classifier to novel, unseen data. LVQ training can follow
heuristic ideas as in Kohonen’s original LVQ1 [15]. A variety of
modifications has been suggested in the literature, aiming at
better convergence or favorable generalization behavior. A pro-
minent and appealing example is the cost function based general-
ized learning vector quantization (GLVQ) [16]. We will resort to
the latter as an example framework in which to introduce and
discuss divergence-based LVQ. We would like to point out,
however, that differentiable divergences could be incorporated
into a large variety of cost function based or heuristic training
prescriptions.

GLVQ training is guided by the optimization of a cost function
of the form

EðWÞ ¼
XP

m ¼ 1

F
dðxm,wJÞ�dðxm,wK Þ

dðxm,wJÞþdðxm,wK Þ

� �
, ð1Þ

where wJ denotes the closest correct prototype with cðwJÞ ¼ ym

and wK is the closest incorrect prototype ðcðwK ÞaymÞ. Note that
the argument of F in Eq. (1) is restricted to the interval [�1,+1].
While F is in general a non-linear (e.g. sigmoidal) function [16],
we consider here the simple case FðxÞ ¼ x.

In principle, a variety of numerical optimization procedures is
available for the minimization of the cost function (1). On-line
training using stochastic gradient descent is a particularly simple
method which has proven useful in many practical applications.
In stochastic gradient descent, a single, randomly selected exam-
ple x is presented and the corresponding winners wJ,wK are
updated incrementally by

DwJ ¼
�Z dK ðxÞ

ðdJðxÞþdK ðxÞÞ
2

@

@wJ
dJðxÞ, DwK ¼

þZ dJðxÞ

ðdJðxÞþdK ðxÞÞ
2

@

@wK
dK ðxÞ

ð2Þ

where dL(x)¼d(x,wL) and @=@wL denotes the gradient with respect
to wL. The learning rate Z controls the step size of the algorithm.
Training is performed in so-called epochs, each of which presents
all examples in the training data in a randomized order.

Practical prescriptions are obtained by inserting a specific
distance d(x,w) and its gradient. Meaningful dissimilarities should
satisfy the conditions

dðx,wÞZ0 for all x, w and dðx,wÞ ¼ 0 for w¼ x:

Note that the LVQ framework does not require that the distance
measure satisfies metric properties such as triangular inequalities
or symmetry. In both, training and working phase, only distances
between data and prototype vectors have to be evaluated, the
distances between two prototypes or two feature vectors are
never used.

In the following we assume that the data consists of vectors of
non-negative components xjZ0 which are normalized toPN

j ¼ 1 xj ¼ 1. Potential extensions to non-normalized positive data
are discussed at the end of this section.

Normalized non-negative xj can be interpreted as probabilities.
This interpretation may be just formal, as for instance in the first
example data set (WBC) that we consider in the following section.
Probabilistic interpretations appear natural in many cases, for
instance, whenever the vectors x represent histograms or spectra.
An important example for the former is the characterization of
images by normalized gray value or color histograms, which we also
consider in our second example data set, see Section 3. Frequently,
spectral data is conveniently normalized to constant total intensity
and is employed for classification in a large variety of fields including
remote sensing or bioinformatics [1]. Assuming normalized non-
negative data suggests, of course, the consideration of prototype
vectors which satisfy the same constraints. Hence, we enforce

wjZ0 and
XN

j ¼ 1

wj ¼ 1 ð3Þ

explicitly after each training step, Eq. (2).
Under the above assumptions, information theory provides a

multitude of potentially useful dissimilarity measures. Different
classes of divergences and their mathematical properties are
detailed in [17,18], while [19] presents first examples of diver-
gence-based LVQ.

We compare results of DLVQ with the standard choice, i.e.
(squared) Euclidean distance:

Deuðx,wÞ ¼ 1
2ðx�wÞ2,

@Deuðx,wÞ

@wk
¼�ðxk�wkÞ: ð4Þ

Inserting the derivative with respect to w into the general
framework leads to the familiar GLVQ algorithm which moves
the updated prototypes either towards or away from the pre-
sented feature vector, depending on their class labels [16].

Our first results concern the so-called Cauchy–Schwarz (CS)
divergence, as introduced in [20]:

Dcsðx,wÞ ¼ 1
2log½x2w2��logxT w,

@Dcsðx,wÞ

@wk
¼

wk

w2
�

xk

xT w
: ð5Þ

It is particularly simple and, like the Euclidean measure, obeys the
symmetry relation d(x,w)¼d(w,x).

It might be interesting to note that, apart from the logarithm,
the CS-measure is formally identical to the Pearson Correla-
tion [21] in the case of zero mean data. Pearson Correlation has
been used in the context of LVQ, see [21]. However, it is important
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to realize that the CS-divergence is applied only to non-negative
and, consequently, non-zero mean data.

In the following, we extend our preliminary studies of the CS-
divergence [19] and consider the more general family of
g-divergences, see [17,18] for the mathematical background:

Dgðy,zÞ ¼
1

gþ1
log

X
j

ygþ1
j

0
@

1
A

1=g

�
X

j

zgþ1
j

0
@

1
A

2
64

3
75�log

X
j

yjz
g
j

0
@

1
A

1=g
2
64

3
75

ð6Þ

for y,zARN . The precise form of this dissimilarity measure is
controlled by the parameter g40. Note that for g¼ 1 one obtains
the symmetric Cauchy–Schwarz divergence as a special case, while
the limit g-0 yields the popular Kullback–Leibler divergence.

In general, for ga1, dgðx,yÞadgðy,xÞ. The asymmetry is also
reflected in the derivatives with respect to the first or second
argument, respectively. Consequently, the use of dðx,wÞ ¼Dgðx,wÞ
yields a DLVQ scheme different from the one derived for
dðx,wÞ ¼Dgðw,xÞ.

In the following we consider only training processes which
make consistent use of either Dgðw,xÞ or Dgðx,wÞ, respectively.
One and the same measure is employed throughout the entire
training process and when evaluating the classification perfor-
mance. Accordingly, one of the following derivatives has to be
inserted into Eq. (2) to yield the actual DLVQ prescription [17,18]:

@Dgðw,xÞ

@wj
¼

1

g
wg

jP
kwgþ1

k

�
1

g
xgjP

kwkxgk
ð7Þ

@Dgðx,wÞ

@wj
¼

wg
jP

kwgþ1
k

�
xjw

g�1
jP

kxkwg
k

: ð8Þ

Note that g-divergences with g40 are invariant under rescal-
ing of the arguments: Dgðly,mzÞ ¼Dgðy,zÞ for l,m40 [17,18].
Hence, the normalization of the feature vectors,

P
jxj ¼ 1, is not

required in the formalism and has no effect on the results
presented here. This invariance does not hold for more general
dissimilarities, as discussed in [17].
3. Data sets and classification problems

Two different real world data sets serve as a testbed for the
suggested DLVQ algorithms.

3.1. Wisconsin Breast Cancer (WBC) data

We first apply DLVQ to a popular benchmark problem: The
Wisconsin Breast Cancer (original) data set (WBC) from the UCI data
repository [13]. Disregarding 16 vectors which contain missing
values, the WBC set provides 683 examples in 9 dimensions. The
data contains labels corresponding to malignant (239 examples) and
benign samples (444 examples). Single features correspond to
different score values between 1 and 10, see [13] for their definition.
This does not imply a natural interpretation of feature vectors as
histograms or probabilities. However, the application of the diver-
gence-based formalism is possible and it is justified to the same
degree as the more popular choice of Euclidean distances. For a
more detailed description of this data set and further references we
refer the reader to [13] and [22]. We apply a normalization such thatP

jxj ¼ 1 for the following analysis.

3.2. Cassava mosaic disease (CMD) data

The second data set corresponds to features extracted from
leaf images of cassava plants as provided by the Namulonge
National Crops Resources Research Institute, Uganda. Sample
images represent 92 healthy plants and 101 plants infected with
the cassava mosaic disease. For example images and further
details of the image acquisition, see [14].

Standard processing techniques were employed to remove
background and clutter and in order to obtain a set of character-
istic features from the leaf images. When aiming at optimal
classification performance, various sets of features may be taken
into account [14]. Here we limit the analysis to the aspect of
discolorization caused by the disease. For the application of DLVQ
we consider normalized histograms with 50 bins representing the
distribution of hue values in the corresponding image. Example
hue histograms can also be found in [14]. The application of DLVQ
appears natural in this problem, as the information is represented
by normalized histograms reflecting statistical properties of
the data.
4. Computer experiments and results

For the following evaluation and comparison of algorithms, we
split the available data randomly into training (90% of the data)
and test set (10%). If not stated otherwise, all results reported in
the following were obtained as averages over 25 randomized
splits. In both cases, we consider the simplest possible LVQ
system with one prototype per class, only. Their initial positions
are obtained as the mean of 50% randomly selected examples
from each class in the respective training set.

The effect of the learning rate on performance depends on
properties of the data set and on the distance measure in use. For
simplicity, training is performed at constant learning rates in this
first study. In order to facilitate a fair comparison, we determined
a close to optimal learning rate from preliminary runs with
respect to the achieved accuracies after a fixed number of training
epochs. For each algorithm we selected the best learning rate
from the set {10�3,10�4,y,10�12}. Results presented in the
following are obtained after 200 training epochs for the WBC
data and after 1500 epochs with CMD data. The learning rates
employed for the WBC data set were Z¼ 10�4 when using
Euclidean distances and Z¼ 10�6 for g-divergences. In the CMD
data set, learning rates of Z¼ 10�5 (Euclidean measure) and
Z¼ 10�6 (g-divergences) have been used.

After training we determine training and test set accuracies of
the classifiers and we report the average values obtained over the
validation runs. When comparing classifiers, it is important to
take into account that greater overall test accuracies do not
necessarily indicate better performance. The Winner-Takes-All
LVQ classifier represents just one working point, i.e. one combi-
nation of class 1 error and class 2 error. In particular, for
unbalanced data sets a more detailed evaluation of the classifica-
tion performance is instrumental.

In order to obtain further insight, we introduce a bias y to the
classification rule after training: an input vector x is assigned to
class 1 if

dðx,w1Þodðx,w2Þþy, ð9Þ

where wi is the closest prototype representing class i. The bias of
the resulting classification towards one of the classes depends on
the sign and magnitude of the threshold. By varying y, the full
receiver operating characteristics (ROC) of the classifier can be
obtained [23,24]. Results presented in Fig. 1 display a threshold-
average over the validation runs [24]. In the ROC, false positive

rates correspond to the fraction of truly benign cases (WBC data)
or healthy plants (CMD) which are misclassified. Correspondingly,
the true positive rate gives the rate at which truly malignant
(WBC) or diseased plants (cassava) are correctly classified. As an
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Fig. 1. ROC curves for the WBC data set (left panel) and CMD data set (right panel). For the WBC data, results are shown on average over 100 randomized training set

compositions, whereas for the CMD data we have performed 200 randomized runs. In both cases, the ROC curves were threshold-averaged [24]. Results are displayed for

the GLVQ variants based on Euclidean distances (solid lines) and Cauchy–Schwarz divergence (dashed lines).

Table 1
Numerical results for WBC and CMD data sets: mean accuracies in the unbiased

LVQ classifier and AUC with respect to training and test sets, respectively.

Numbers in parentheses give the standard deviation as observed over the

validation runs.

Training acc. Test acc. AUC (training) AUC (test)

WBC
Deu(x,w) 0.850 (0.040) 0.845 (0.041) 0.924 (0.004) 0.918 (0.004)

Dcs(x,w) 0.864 (0.003) 0.853 (0.007) 0.923 (0.005) 0.916 (0.005)

CMD
Deu(x,w) 0.790 (0.005) 0.782 (0.007) 0.856 (0.006) 0.848 (0.007)

Dcs(x,w) 0.807 (0.0002) 0.805 (0.0004) 0.872 (0.003) 0.867 (0.003)
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important and frequently employed measure of performance we
also determine the corresponding area under curve (AUC) with
respect to training set and test set performance.

4.1. Euclidean distance and Cauchy–Schwarz divergence

We first compare the two symmetric distance measures
discussed here: standard Euclidean metrics and the Cauchy–
Schwarz divergence. Fig. 1 displays the ROC with respect to test
set performances in the WBC benchmark problem (left panel) and
the CMD data set (right panel).

Table 1 summarize numerical findings in terms of the
observed training and test accuracies for the unbiased LVQ
classifier with y¼ 0 and the AUC of the receiver operator
characteristics.

Note that for the WBC (original) data set, higher accuracies
have been reported in the literature, see [13] for references. Here,
we consider only the simplest LVQ setting in order to compare the
use of Euclidean and divergence-based distance measures. The
optimization of the DLVQ performance and the comparison with
competing methods will be addressed in forthcoming studies.

In the WBC problem we do not observe drastic performance
differences between the considered distance measures. The
Cauchy–Schwarz-based DLVQ scheme does outperform standard
Euclidean LVQ in the CMD data set as signaled by the greater AUC
values. This reflects the fact that the CMD data set contains
genuine histograms, for which the use of DLVQ seems natural.

4.2. The family of g-divergences

The precise form of the g-divergence is specified by the
parameter g40 in Eq. (6). In addition, we can select the measure
Dgðx,wÞ or Dgðw,xÞ, respectively. We display the mean test set
accuracies as well as the AUC of the ROC as functions of g for both
variants of the g-divergence in Fig. 2 (WBC data) and in
Fig. 3 (CMD).

In both data sets we do observe a dependence of the AUC
performance on the value of g with a more or less pronounced
optimum in a particular choice of the parameter. This is not
necessarily paralleled by a maximum of the corresponding test
set accuracy for unbiased LVQ classification as the latter repre-
sents only one particular working point of the ROC.

Note that in the range of values g displayed in Fig. 3 (right
panel), corresponding to the use of Dgðw,xÞ, the AUC appears to
saturate for large values of the parameter. Additional experi-
ments, however, show that performance decreases weakly when
g is increased further.

For both data sets, the influence of g appears to be stronger
and the best achievable AUC is slightly larger in the DLVQ variant
using Dgðx,wÞ. Table 2 summarizes numerical results in terms of
the best observed test set AUC and the corresponding values of g
as found for WBC and CMD data in both variants of the
g-divergence.
5. Summary and conclusion

We have presented DLVQ as a novel framework for distance-
based classification. The use of divergences as distance measures
is, in principle, possible for all data sets that contain non-negative
feature values. It appears particularly suitable for the classifica-
tion of histograms, spectra, or similar data structures for which
divergences have been designed, originally.

As a specific example for this versatile framework we have
considered the family of g-divergences which contains the so-
called Cauchy–Schwarz divergence as a special case and
approaches the well-known Kullback–Leibler divergence in the
limit g-0. We would like to point out that a large variety of
differentiable measures could be employed analogously, an over-
view of suitable divergences is given in [17,18].

The aim of this work is to demonstrate the potential usefulness
of the approach. To this end, we considered two example data
sets. The Wisconsin Breast Cancer (original) data is available from
the UCI Machine Learning Repository [13] and serves as a popular
benchmark problem for two-class classification. The second data
set comprises histograms which represent leaf images for the
purpose of the detection of the cassava mosaic disease [14].

In case of the WBC data we observe little differences in
performance quality when comparing standard Euclidean metrics
based LVQ with DLVQ employing the Cauchy–Schwarz
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Fig. 2. Overall test set accuracies for the unbiased LVQ system with y¼ 0 (upper panels) and AUC of the ROC (lower panels) as a function of g for the WBC data set. The left

panel displays results for the distance Dgðx,wÞ, while the right panel corresponds to the use of Dgðw,xÞ. Error bars mark the observed standard errors of mean.

0 0.5 1 1.5
0.78

0.8

0.82

0.84

0.86

γ

Te
st

 A
cc

ur
ac

y

0 0.5 1 1.5

0.86

0.88

0.9

γ

Te
st

 A
U

C

0 0.5 1 1.5
0.78

0.8

0.82

0.84

0.86

γ

Te
st

 A
cc

ur
ac

y

0 0.5 1 1.5

0.86

0.88

0.9

γ

Te
st

 A
U

C

Fig. 3. Same as Fig. 2, but here for the CMD data set. The left panel corresponds to the use of Dgðw,xÞ, while results displayed in the right panel were obtained for Dgðw,xÞ.

Table 2
Best performance in terms of the mean test set AUC and corresponding value of g
for the WBC and CMD data sets. Values in parenthesis correspond to the observed

standard deviations.

g AUC (test)

WBC
Dgðx,wÞ 0.6 0.922 (0.004)

Dgðw,xÞ 0.5 0.919 (0.005)

CMD
Dgðx,wÞ 0.2 0.888 (0.003)

Dgðw,xÞ 1.2 0.882 (0.004)
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divergence. When using the more general g-divergences, a weak
dependency on g is found which seems to allow for improving the
performance slightly by choosing the parameter appropriately.

In contrast to the WBC, the CMD data set consists of genuine
histogram data and the use of divergences appears more natural.
In fact, we find improvement over the standard Euclidean
measure already for the symmetric Cauchy–Schwarz divergence.
Further improvement can be achieved by choosing an appropriate
value of g in both variants of the non-symmetric distance
measure. The dependence on g and its optimal choice is found
to be data set specific.

The application of DLVQ appears most promising for problems
that involve data with a natural interpretation as probabilities or
positive measures. In forthcoming projects we will address more
such data sets. Potential applications include image classification
based on histograms, supervised learning tasks in a medical
context, or the analysis of spectral data as in bioinformatics or
remote sensing.

Besides the more extensive study of practical applications,
future research will also address several theoretical and concep-
tual issues. The use of divergences is not restricted to the GLVQ
formulation we have discussed here, it is possible to introduce
DLVQ in a much broader context of heuristic or cost function
based LVQ algorithms. Within several families of divergences it
appears feasible to employ hyperparameter learning in order to
determine, for instance, the optimal g directly in the training
process, see [25] for a similar problem in the context of Robust
Soft LVQ [26]. The use of asymmetric distance measures raises
interesting questions concerning the interpretability of the LVQ
prototypes, we will address this issue in forthcoming projects,
as well.
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Finally, the incorporation of relevance learning [2–6] into the
DLVQ framework is possible for measures that are invariant under
rescaling of the data, such as the g-divergences investigated here.
Relevance learning in DLVQ bears the promise to yield very
powerful LVQ training schemes.
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